skip to main content
Zachary E. Ross  /  Publications

Publications

2024

[79] Shi, Y., Gao, A. F., Ross, Z. E., and K. Azizzadenesheli. Universal Functional Regression with Neural Operator Flows, submitted.

[78] Sirorattanakul, K., Wilding, J. D., Acosta, M., Li, Y., Ross, Z. E., Bourne, S. J., van Elk, J., and J.-P. Avouac. Bursts of fast propagating swarms of induced earthquakes at the Groningen gas field, submitted.

[77] Wilding J. D. and Z. E. Ross. Rift zone architecture and inflation-driven seismicity of Mauna Loa volcano, submitted.

[76] Zou, C., Azizzadenesheli, K., Ross, Z. E., and R. W. Clayton. Deep Neural Helmholtz Operators for 3D Elastic Wave Propagation and Inversion, submitted. https://arxiv.org/abs/2311.09608

[75] Ross, Z. E., Insights on the dip of fault zones in Southern California from modeling of seismicity with anisotropic point processes, submitted.


2023

[74] Sun, H., Ross, Z. E., Zhu, W., and K. Azizzadenesheli. Phase Neural Operator for Multi‐Station Picking of Seismic Arrivals, Geophys. Res. lett., 50 (24), e2023GL106434.

[73] Shi, Y., Lavrentiadis, G., Asimaki, D., Ross, Z. E., and K. Azizzadenesheli. Broadband Ground Motion Synthesis via Generative Adversarial Neural Operators: Development and Validation, Bull Seismol. Soc. Am., in press https://arxiv.org/abs/2309.03447

[72] *Wilding, J. D. and Z. E. Ross. Insights on the state of stress in the mantle beneath Pahala, Hawai`i, Volcanica, 7(1), doi: 10.30909/vol.07.01.0119.

[71] Atterholt, J. and Z. E. Ross. Finite Source Properties of Large Strike-Slip Earthquakes, Geophys. J. Int., 236 (2), 889-903.

[70] Zhu, W., Biondi, E., Li, J., Yin, J., Ross, Z. E., Zhan, Z. Seismic Arrival-time Picking on Distributed Acoustic Sensing Data using Semi-supervised Learning, Nature Communications, 14 (1), 8192.

[69] Ross, Z. E., Zhu, W., and K. Azizzadenesheli. Neural mixture model association of seismic phases, arXiv:2301.02597

[68] Sun, H., Yang, Y., Azizzadenesheli, K., Clayton, R. W., and Z. E. Ross. Accelerating Time-Reversal Imaging with Neural Operators for Real-time Earthquake Locations, submitted to JGR Solid Earth.

[67] Cochran, E. S., Page, M., van der Elst, N. J., Ross, Z. E., and D. T. Trugman. Fault Roughness at Seismogenic Depths and Links to Earthquake Behavior, The Seismic Record, 3 (1): 37–47. doi: https://doi.org/10.1785/0320220043

[66] Yang, Y., Gao, A. F., Azizzadenesheli, K., Clayton, R. W., and Z. E. Ross. Rapid Seismic Waveform Modeling and Inversion With Neural Operators, IEEE Transactions on Geoscience and Remote Sensing, vol. 61, pp. 1-12, 2023, Art no. 5906712, doi: 10.1109/TGRS.2023.3264210.

[65] *Muir, J. B., and Ross, Z. E., Aseismic forcing during the 2016-2020 Cahuilla swarm sequence determined with a deep Gaussian process model, Geophys. J. Int. 234 (1), 427-438, [arXiv:2301.10518]


2022

[64] *Wilding, J. D., Zhu, W., Ross, Z. E., and J. M. Jackson. The magmatic web beneath Hawai`i, Science, doi: 10.1126/science.ade5755

[63] Rahman, M. A., Ross, Z. E., and K. Azizzadenesheli. U-NO: U-shaped Neural Operators, Transactions on Machine Learning Research, 2835-8856, https://openreview.net/forum?id=j3oQF9coJd

[62] Sirorattanakul, K., Ross, Z. E., Khoshmanesh, M., Cochran, E. S., Acosta, M., & Avouac, J.-P.. The 2020 Westmorland, California earthquake swarm as aftershocks of a slow slip event sustained by fluid flow. Journal of Geophysical Research: Solid Earth, 127, e2022JB024693. https://doi.org/10.1029/2022JB024693

[61] Rahman, M. A., Florez, M. A., Anandkumar, A., Ross, Z. E., and K. Azizzadenesheli. Generative Adversarial Neural Operators, Transactions on Machine Learning Research, 2835-8856, https://openreview.net/forum?id=X1VzbBU6xZ

[60] Ross, Z. E., Ben-Zion, Y., and I. Zaliapin. Geometrical properties of seismicity in California, Geophys. J. Int., doi: 10.1093/gji/ggac189

[59] *Wilding, J. D. and Z. E. Ross. Aftershock moment tensor scattering. Geophysical Research Letters, 49, e2022GL098473. https://doi.org/10.1029/2022GL098473

[58] *Atterholt, J. and Z. E. Ross. Bayesian framework for inversion of second-order stress glut moments: application to the 2019 Ridgecrest Sequence Mainshock, J. Geophys. Res.: Solid Earth, e2021JB023780, doi: 10.1029/2021JB023780

[57] ^Florez, M. A., Caporale, M., Buabthong, P., Ross, Z. E., Asimaki, D., and M.-A. Meier. Data-driven Accelerogram Synthesis using Deep Generative Models, Bull. Seismol. Soc. Am., doi: 10.1785/0120210264 [arXiv:2011.09038]

[56] *Liu, Y.-K., Ross, Z. E., Cochran, E. S., and N. Lapusta. A unified perspective of seismicity and fault coupling along the San Andreas Fault, Science Advances, 8(8) doi: 10.1126/sciadv.abk1167


2021

[55] Avouac, J.-P., Vrain, M., Kim, T., Smith, J., Ader, T., Ross, Z. E., and T. Saarno. A Convolution Model for Earthquake Forecasting Derived from Seismicity Recorded During the ST1 Geothermal Project on Otaniemi Campus, Finland. In: Proceedings World Geothermal Congress 2020+1. Geothermal Rising , pp. 1-13.

[54] Gao, A. F., Castillo, J., Yue, Y., Ross, Z. E., and K. L. Bouman. DeepGEM: Generalized Expectation-Maximization for Blind Inversion. Advances in Neural Information Processing Systems, 34. open access link

[53] Yang, Y., Gao, A. F., Castellanos, J. C., Ross, Z. E., Azizzadenesheli, K., and R. W. Clayton. Seismic wave propagation and inversion with Neural Operators, The Seismic Record, 1 (3), 126-134, open access link

[52] Li, B. Q., Smith, J. D., and Z. E. Ross. Basal nucleation and the prevalence of ascending swarms in Long Valley Caldera, Sci. Adv., doi: 10.1126/sciadv.abi8368 open access link

[51] Marsan, D. and Z. E. Ross. Inverse migration of seismicity quiescence during the 2019 Ridgecrest sequence, J. Geophys. Res-Solid Earth, doi: 10.1029/2020JB020329

[50] Yu, E., Bhaskaran, A., Chen, S.-L., Ross, Z. E., Hauksson, E., and R. W. Clayton. Southern California Earthquake Data Now Available in the Amazon AWS Cloud, Seismol. Res. Lett., doi: 10.1785/0220210039

[49] Smith, J. D., Ross, Z. E., Azizzadenesheli, K., and J. B. Muir. HypoSVI: Hypocentre inversion with Stein variational inference and Physics Informed Neural Networks, Geophys. J. Int., [arXiv:2101.03271].

[48] Stephenson, O. L, Koehne, T., Zhan, E., Cahill, B. E., Yun, S.-H., Ross, Z. E., and M. Simons. Deep Learning-based Damage Mapping with InSAR Coherence Time Series, IEEE Trans. Geosci. Rem. Sens., doi: 10.1109/TGRS.2021.3084209

[47] Ross, Z. E., and E. S. Cochran. Evidence for latent crustal fluid injection transients in Southern California from long-duration earthquake swarms, Geophys. Res. Lett., doi: 10.1029/2021GL092465

[46] Richards, C., Tape, C., Abers, G. A., and Z. E. Ross. Anisotropy variations in the Alaska subduction zone based on shear-wave splitting from intraslab earthquakes, Geophys. Geochem. Geosys., doi: 10.1029/2020GC009558

2020

[45] Hauksson, E., Olson, B., Grant, A., Andrews, J. R., Chung, A. I., Hough, S., Kanamori, H., McBride, S. K., Michael, A., Page, M., Ross, Z. E., Smith, D. E., Valkaniotis, S. The Normal Faulting 2020 Mw5.8 Lone Pine Eastern California Earthquake Sequence, Seismol. Res. Lett, doi:10.1785/0220200324.

[44] Smith, J. D., Azizzadenesheli, K, and Ross, Z. E.. EikoNet: Solving the Eikonal equation with Deep Neural Networks, IEEE Trans. Geosci. Rem. Sens., doi: 10.1109/TGRS.2020.3039165. [arXiv:2004.00361]

[43] Yeck, W. L., Patton, J. M., Ross, Z. E., Hayes, G. P., Guy, M. R., Ambruz, N. B., Shelly, D. R., Benz, H. M., and P. S. Earle. Leveraging Deep Learning in Global 24/7 Real-Time Earthquake Monitoring at the National Earthquake Information Center, Seismol. Res. Lett, doi: 10.1785/0220200178

[42] Schulte-Pelkum, V., Ross, Z. E., Mueller, K., and Y. Ben-Zion. Tectonic inheritance from deformation fabric in the brittle and ductile southern California crust, J. Geophys. Res-Solid Earth, 125 (8), e2020JB019525

[41] Plesch, A., Shaw, J. H., Ross, Z. E., and E. Hauksson. Detailed 3D fault representations for the 2019 Ridgecrest earthquake sequence, Bull. Seismol. Soc. Am., 110 (4), 1818-1831

[40] Zhang, X., Jia, Z., Ross, Z. E., and R. W. Clayton. Extracting dispersion curves from ambient noise correlations using deep learning, IEEE Trans. Geosci. Rem. Sens., doi:10.1109/TGRS.2020.2992043, [arXiv:2002.02040]

[39] Ross, Z. E., Cochran, E. S., Trugman, D. T., and J. D. Smith. 3D fault architecture controls the dynamism of earthquake swarms, Science, 368 (6497), doi: 10.1126/science.abb0779.

[38] Cochran, E. S., Skoumal, R. J., McPhillips, D., Ross, Z. E., and K. M. Keranen. Activation of optimally- and unfavorably-oriented faults in a uniform local stress field during the 2011 Prague, Oklahoma, sequence, Geophys. J. Int, ggaa153, doi:10.1093/gji/ggaa153.

[37] Trugman, D. T., Ross, Z. E., and P. A. Johnson. Imaging Stress and Faulting Complexity Through Earthquake Waveform Similarity, Geophys. Res. Lett., e2019GL085888, doi:10.1029/2019GL085888.

[36] Kanamori, H., Ross, Z. E., and L. Rivera. Estimation of radiated energy using the KiK-net downhole records--Old method for modern data--, Geophys. J. Int, ggaa040, doi:10.1093/gji/ggaa040.

[35] Ross, Z. E., Trugman, D. T., Azizzadenesheli, K., and A. Anandkumar. Directivity Modes of Earthquake Populations with Unsupervised Learning, J. Geophys. Res-Solid Earth, doi:10.1029/2019JB018299, [arXiv:1907.00496]

2019

[34] Ross, Z. E., Idini, B., Jia, Z., Stephenson, O. L., Zhong, M., Wang, X., Zhan, Z., Simons, M., Fielding, E. J., Yun, S.-H., Hauksson, E., Moore, A. W., Liu, Z., Jung, J. Hierarchical interlocked orthogonal faulting in the 2019 Ridgecrest earthquake sequence, Science, 366 (6463), 346-351, doi: 10.1126/science.aaz0109 (PDF here)

[33] Trugman, D. T. and Z. E. Ross. Pervasive foreshock activity across southern California, Geophys. Res. Lett., 46 (15), 8772-8781, doi:10.1029/2019GL083725 [EarthArXiv:qenm2].

[32] Ross, Z. E., Trugman, D. T., Hauksson, E., and P. M. Shearer. Searching for Hidden Earthquakes in Southern California, Science, 364 (6442), 767-771, doi: 10.1126/science.aaw6888.

[31] Hauksson, E., Ross, Z. E., and E. S. Cochran. Slow-Growing and Extended-Duration Seismicity Swarms: Reactivating Joints or Foliations in the Cahuilla Valley Pluton, Central Peninsular Ranges, Southern California, J. Geophys. Res.-Solid Earth, doi.org/10.1029/2019JB017494

[30] Ross, Z. E., Yue, Y., Meier, M.-A., Hauksson, E., and T. H. Heaton. PhaseLink: A Deep Learning Approach to Seismic Phase Association, J. Geophys. Res.-Solid Earth, 124 (1), 856-869, [arXiv:1809.02880].

2018

[29] Meier, M.-A., Ross, Z. E., Ramachandran, A., Balakrishna, A., Nair, S., Kundzicz, P., Li, Z., Hauksson, E., Andrews, J., and Y. Yue. Reliable Real-time Seismic Signal/Noise Discrimination with Machine Learning, J. Geophys. Res-Solid Earth, doi:10.1029/2018JB016661.

[28] Kanamori, H. and Z. E. Ross. Reviving mB. Geophys. J. Int., 216 (3), doi:10.1093/gji/ggy510.

[27] Kong, Q., Trugman, D. T., Ross, Z. E., Bianco, M. J., Meade, B. J., and P. Gerstoft. Machine learning in seismology —Turning data into insights. Seismol. Res. Lett., 90 (1), doi:10.1785/0220180259.

[26] Cochran, E. S., Ross, Z. E., Harrington, R. M., Dougherty, S. M., and J. L. Rubenstein. Induced earthquake families reveal distinctive evolutionary patterns near disposal wells, J. Geophys. Res.-Solid Earth, 123, 8045–8055, doi:10.1029/2018JB016270.

[25] Ross, Z. E., Meier, M.-A., Hauksson, E., and T. H. Heaton. Generalized Seismic Phase Detection with Deep Learning, Bull. Seismol. Soc. Am., 108 (5A), 2894-2901, doi: 10.1785/0120180080 [arXiv:1805.01075].

[24] Ross, Z. E., Meier, M.-A., and E. Hauksson. P-wave arrival picking and first-motion polarity determination with deep learning, J. Geophys. Res.-Solid Earth, 123, doi: 10.1029/2017JB015251 [arXiv:1804.08804].

[23] Cheng, Y., Ross, Z. E., and Y. Ben-Zion. Diverse volumetric faulting patterns in the San Jacinto fault zone, J. Geophys. Res.-Solid Earth, 123. doi: 10.1029/2017JB015408.

[22] Ross, Z. E., Kanamori, H., Hauksson, E., and N. Aso. Dissipative intraplate faulting during the 2016 Mw 6.2 Tottori, Japan earthquake, J. Geophys. Res.-Solid Earth, doi: 10.1002/2017JB015077.

[21] Qin, L., Ben-Zion, Y., Qiu, H., Share, P.-E., Ross, Z. E., and F. L. Vernon. Internal structure of the San Jacinto fault zone in the trifurcation area, southeast of Anza, California, from data of dense seismic arrays, Geophys. J. Int., 213(1), 98-114, doi:10.1093/gji/ggx540.

2017

[20] Yue, H., Ross, Z. E., Liang, C., Michel, S., Fattahi, H., Fielding, E., Moore, A., Liu, Z., and B. Jia. The 2016 Kumamoto Mw = 7.0 earthquake: a significant event in a fault-volcano system, J. Geophys. Res.-Solid Earth, 122 (11), doi: 10.1002/2017JB014525.

[19] Allam, A. A., Schulte-Pelkum, V., Ben-Zion, Y., Tape, C., Ruppert, N., and Z. E. Ross. Ten Kilometer Vertical Moho Offset and Shallow Velocity Contrast Along the Denali Fault from Double-difference Tomography, Receiver Functions, and Fault Zone Head Waves, Tectonophysics, 721, 59-69.

[18] Ross, Z. E., Rollins, C., Cochran, E. S., Hauksson, E., Avouac, J.-P., and Y. Ben-Zion. Aftershocks driven by afterslip and fluid pressure sweeping through a fault-fracture mesh, Geophys. Res. Lett., 44 (16), doi:10.1002/2017GL074634.

[17] Ross, Z. E., Kanamori, H., and E. Hauksson. Anomalously large complete stress drop during the 2016 Mw 5.2 Borrego Springs earthquake inferred by waveform modeling and near-source aftershock deficit, Geophys. Res. Lett., 44 (12), doi: 10.1002/2017GL073338.

[16] Share, P.-E., Ben-Zion, Y., Ross, Z. E., Qiu, H., and F. L. Vernon. Internal structure of the San Jacinto fault zone at Blackburn Saddle from seismic data of a dense linear array. Geophys. J. Int., doi: 10.1093/gji/ggx191.

[15] Qiu, H., Ben-Zion, Y., Ross, Z. E., Share, P.-E., and F. L. Vernon. Internal structure of the San Jacinto fault zone at Jackass Flat from data recorded by a dense linear array. Geophys. J. Int., doi: 10.1093/gji/ggx096.

[14] Ross, Z. E., Hauksson, E., and Y. Ben-Zion. Abundant off-fault seismicity and orthogonal structures in the San Jacinto fault zone. Science Advances, 3 (3), e1601946, doi: 10.1126/sciadv.1601946.

[13] Hauksson, E., Meier, M.-A., Ross, Z. E., and L. M. Jones. Evolution of seismicity near the southernmost terminus of the San Andreas Fault: Implications of recent earthquake clusters for earthquake risk in southern California. Geophys. Res. Lett., 44, doi: 10.1002/2016GL072026.

2016

[12] Ross, Z. E., Ben-Zion, Y., White, M. C., and F.L. Vernon. Analysis of earthquake body wave spectra for potency and magnitude values: Implications for magnitude scaling relations. Geophys. J. Int., 10.1093/gji/ggw327.

[11] Ross, Z. E., White, M. C., Vernon, F. L., and Y. Ben-Zion. An improved algorithm for real-time S-wave picking with application to the (augmented) ANZA network in southern California. Bull. Seismol. Soc. Am., 106 (5), doi: 10.1785/0120150230.

[10] Ross, Z. E. and Y. Ben-Zion. Toward reliable automated estimates of earthquake source properties from body wave spectra. J. Geophys. Res.:Solid Earth, doi: 10.1002/2016JB013003.

[9] Okaya, D., Christensen, N., Ross, Z. E., and F. T. Wu. Terrane-controlled crustal shear wave splitting in Taiwan. Geophys. Res. Lett., 43 (2), doi: 10.1002/2015GL066446

[8] Wu, F. T., Ross, Z. E., Okaya, D., Ben-Zion, Y., Wang, C.-Y., Kuo-Chen, H., and W.-T. Liang. Dense Network, Intense Seismicity and Tectonics of Taiwan, Tectonophysics, 692 doi: 10.1016/j.tecto.2016.04.025.

2015

[7] Ross, Z. E. and Y. Ben-Zion. An algorithm for automated identification of fault zone trapped waves. Geophys. J. Int., 202 (2), 933–942, doi:10.1093/gji/ggv197.

[6] Ben-Zion, Y., Vernon, F. L., Ozakin, Y., Zigone, D., Ross, Z. E., Meng, H., White, M., Reyes, J., Hollis, D., and M. Barklage. Basic data features and results from a spatially-dense seismic array on the San Jacinto fault zone. Geophys. J. Int., 202 (1), 370-380, doi: 10.1093/gji/ggv142.

[5] Ross, Z. E., Y. Ben-Zion, and L. Zhu. Isotropic source terms of San Jacinto fault zone earthquakes based on waveform inversions with a generalized CAP method. Geophys. J. Int., 200 (2), 1269-1280, doi: 10.1093/gji/ggu460

2014

[4] Ross, Z. E. and Y. Ben-Zion. Automatic picking of direct P, S seismic phases and fault zone head waves. Geophys. J. Int., 199 (1): 368-381 doi: 10.1093/gji/ggu267.

[3] Ross, Z. E. and Y. Ben-Zion. An Earthquake Detection Algorithm with Pseudo Probabilities of Multiple Indicators. Geophys. J. Int., 197 (1), 458–463, doi: 10.1093/gji/ggt516

2013

[2] Ross, Z. E. and Y. Ben-Zion. Spatio-temporal variations of double-couple aftershock mechanisms and possible volumetric earthquake strain. J. Geophys. Res. - Solid Earth, 118 (5), doi: 10.1002/jgrb.50202.

2011

[1] Moss, R. E. S. and Z. E. Ross. Probabilistic Fault Displacement Hazard Analysis for Reverse Faults. Bull. Seismol. Soc. Am., 101 (4), doi: 10.1785/0120100248.